Photo-sensors comparison for the dRICH

Alessio Del Dotto for the EIC-PID meeting

Main requisites

Single photon detection

 Sizable QE in a wide range of wavelength: [150,600] nm

Pixel size: ≤ 3 mm

Compactness: limited space for arrangement

Capability to work in magnetic field

Multianode-PMT

H12700 series

Useful for the prototype:

- area about 5 x 5 cm²
- 3 mm pixel size

Figure 5: Single Photon Counting (Example)

Figure 1: Typical Spectral Response

Figure 2: Typical Gain

- "low" dark count rate
- Small dead space
- Quite standard device for RICH: "low" cost
- Difficult to work with PMTs in magnetic field!

MCP - PMT

Time resolution: about 50 ps

Useful for DIRC detectors

R3809U-50

- "low" dark count rate, comparable with PMTs
- Capability of working in magnetic field
- Very good time characteristics
- Expensive device for large area detectors

Silicon photomultiplier

Photon detection efficiency does not include crosstalk and afterpulses.

1000 (Typ.) 10000 (Typ.) 10000

[Figure 2-8] Photon detection efficiency vs. overvoltage

- Insensitive to magnetic field
- Very compact device
- Low cost: comparable with PMTs
- High dark count rate at 25°: time information (order 800 ps) needed to reduce background or cooling system or both

(Typ. $M=1.25 \times 10^6$)

GEM

LAPPD

- The working principle demonstrated for CF₄ gas
- Not useful in the visible light region
- Not easy an extension to visible light in the near future

- A future alternative to MCP-PMT
- Fast timing
- A possible candidate in principle, but still in an R&D stage
- Basic informations still missing (i.e. costs)

Table of comparison

* enough to suppress noise** rate dependent

Parameters	PMT	MCP-PMT	SiPM	LAPPD
Gain	ok	ok	ok	ok
Timing Resolution	good	ok	ok*	good
Dark noise	(KHz)	(KHz)	(MHz)	(KHz)
Radiation Hardness	ok	ok	(ok)**	ok
Single photon	ok	ok	ok	ok
Magetic field tolerance	Not good	ok	good	ok
Detection efficiency	ok	ok	ok	ok?
Cost	ok	expensive	good	?